Les gammes naturelles : quand les notes se mettent au bio
Le système de gamme naturelle repose sur la même idée que la gamme de Pythagore :
- partir d'une note de départ ;
- construire la gamme en ajoutant des notes à partir d'intervalles purs.
Toutefois, au lieu de n'utiliser que la quinte et la quarte, nous considérons également la tierce majeure pure (5/4) et la tierce mineure pure (6/5).
L'idée étant d'atteindre la pureté acoustique en ne jouant que des intervalles purs.
Il existe bien des façons de construire une gamme en n'utilisant que des intervalles purs. En général, on cite en exemple le procédé de Gioseffo Zarlino.
Construire la gamme de Zarlino
Partons d'une note de départ arbitraire, que nous nommerons « do » dans un but purement pédagogique.
Ajoutons les notes issues des intervalles fondamentaux de quarte et quinte.
Prenant chacune de ces trois notes comme point de départ, nous allons ajouter une tierce pure et une quinte pour combler les trous et générer une gamme diatonique complète.
On pourrait s'amuser à compléter la gamme pour obtenir une vraie gamme chromatique, mais vous avez compris l'idée.
Une gamme purement théorique
Cette gamme, bien que séduisante sur le papier, est en pratique assez peu utilisable.
D'abord, les intervalles entre notes successives sont très différents, donc la transposition est impossible.
Ensuite, il est en pratique impossible de ne jouer que des intervalles purs.
Imaginons que je veuille jouer la mélodie suivante :
do, sol, ré, la, mi, do
Si on analyse les intervalles qui composent cette mélodie :
- quinte (do ~ sol) ;
- quarte descendante (sol ~ ré) ;
- quinte (ré ~ la) ;
- quarte descendante (la ~ mi) ;
- tierce descendante (mi ~ do).
Ce qui nous donne les fréquences suivantes, avec une fréquence initiale de « do » arbitrairement placée à 100 Hz.
- do = 100 Hz
- sol = 100 × 3/2 = 150 Hz
- ré = 150 × 3/4 = 112.5 Hz
- la = 112.5 × 3/2 = 168.75 Hz
- mi = 168.75 × 3/4 = 126.5625 Hz
- do = 126,5625 × 4/5 = 101.25 Hz
On constate que des combinaisons d'intervalles purs vont fatalement arriver à une dérive.
Dans cet exemple, il faudrait que mon dernier « do » soit légèrement différent du « do » de départ.
Ces inconvénients font que les gammes naturelles n'ont jamais été vraiment utilisées dans l'histoire.
En résumé
Les gammes naturelles sont construites comme la gamme de Pythagore, mais en prenant d'autres intervalles en compte, comme la tierce. Ces gammes ne permettent pas vraiment de s'affranchir des problèmes posés par la gamme de Pythagore.